Monday, February 17, 2014

Making Sense of the Senseless

SQLite to the Rescue

One of the tasks I’m asked to perform is to geolocate mobile phone calls from Call Detail Reports (CDR). These usually arrive from a carrier as spread sheets: one with details of calls to and from a particular number, and one or more cell tower listings. I’ve tried a variety of ways to process these over time such as BASH scripting and python coding. But by far the easiest and most flexible way to process these records is by importing them into a SQLite database.

The long term difficulty in processing CDRs is that they change over time. It seems that every time I get new records to process, the format has changed which breaks previous code. It takes much more effort to recode a script than it does to write a SQL query on the fly, and I’m certainly no SQL guru. SQLite has enough built in functions to handle nearly any problem you might encounter.

Lets take some Sprint records I recently processed as an example. I was tasked with plotting the locations of the voice calls on a map. There were over 3,600 records for a 12 day period with text message details mixed with voice call details. Only the call details contained references to the tower records, however. Call records included five digit integers that represented the first and last cell towers the mobile phone used during the communication. Text messages contained only zeros in these columns.

The challenge was to retrieve the call records for mapping, ignoring the text messages that did not contain cell tower details. SQLite seemed the easiest way to accomplish this in light of the follow up requirement of looking up each cell tower integer in any one of four associated tower record spread sheets.

Creating the Database

The first step was to create a SQLite database. Fortunately, creating a database is a simple, straight forward process. I performed the work using in the SQLite command line program. However, GUI tools like the excellent SQLite Manager can accomplish the same thing and I recommend them if you are new to SQLite as they can be good teachers.

To create a new database, I simply provided the new database name when I opened the command line program. I called my database cdr.sqlite.

Creating a SQLite database
$ sqlite3 cdr.sqlite
SQLite version 3.7.17 2013-05-20 00:56:22
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite>

Next, I needed a table to hold the call records. I made this something easy to type, so I called it simply cdr. The columns I named for the columns found in the spreadsheet sent by Sprint.

SQLite Create Table Statement for the Call Sprint Detail Report
sqlite> CREATE TABLE "cdr"
   ...> (
   ...> "Calling_NBR" TEXT,
   ...> "Called_NBR" TEXT,
   ...> "Dialed_Digits" TEXT,
   ...> "Type" TEXT,
   ...> "Start_Date" TEXT,
   ...> "End_Date" TEXT,
   ...> "Duration" INTEGER,
   ...> "NEID" INTEGER,
   ...> "Repoll" TEXT,
   ...> "First_Cell" INTEGER,
   ...> "Last_Cell" INTEGER,
   ...> );
sqlite>
Note
In the SQLite command line program, all SQL queries must end in a semi-colon or the interpreter assumes you are adding lines to the statement. If you forget to put the semi-colon at the end of your command, you can enter it on the next line.

To import the CDR data from the spreadsheet, simply export the data without the header row, in text file with comma separated values (CSV). In this case, I called the file "call_records.csv". I had to tell SQLite how the data was delimited (SQLite uses pipes by default), and import the CSV file into the "cdr" table.

Importing the CDR data into the cdr table
sqlite> .separator ","
sqlite> .import call_records.csv cdr
Note
The "dot" commands are special SQLite functions (use .help to view them all) and do not require a semi-colon.

To import the cell tower details, I followed the same process: I created a table I called "towers" using the column headers from the spreadsheet as the column names of the table. Then I exported the cell tower data from each spreadseet to a CSV file and imported the CSVs into the tower table. While I won’t repeat the full process, I will display the table layout (schema) below.

Towers table schema
sqlite> .schema towers
CREATE TABLE "towers" (
    "Cell" INTEGER,
    "Cascade" TEXT,
    "Switch" TEXT,
    "NEID" INTEGER,
    "Repoll" INTEGER,
    "Site_Name" TEXT,
    "Address1" TEXT,
    "Address2" TEXT,
    "City" TEXT,
    "County" TEXT,
    "State" TEXT,
    "Zip" TEXT,
    "Latitude" TEXT,
    "Longitude" TEXT,
    "BTS_Manufacturer" TEXT,
    "Sector" TEXT,
    "Azimuth" TEXT,
    "CDR_Status" TEXT
);
sqlite>

Looking Up Records

Now it was time to lookup the call records in the tower tables to find that latitude and longitude of the tower used to initiate the call an place the mobile device in time and space. I expected it to be straight forward: take the 5-digit tower number from the first_call field of the cdr table, match it to the cell field in the towers table, and return the map coordinates. Easy peasy, right? The SQL equivalent of show me the latitude and longitude of the tower where the CDR first_cell integer matches the Tower cell integer.

First attempt to match call tower numbers to tower coordinates
sqlite> select latitude, longitude from towers, cdr where first_cell = cell;
sqlite> # Ruh roh, raggy, no matches!
sqlite> select first_cell from cdr where first_cell != 0 limit 5;
40385
10962
10962
20962
30392
sqlite> select cell, latitude, longitude from towers;
<redacted>
385|34.046944|-118.448056
385|34.046944|-118.448056
385|34.046944|-118.448056
392|34.063806|-118.30366
392|34.063806|-118.30366
392|34.063806|-118.30366
962|37.657222|-122.094653
962|37.657222|-122.094653
962|37.657222|-122.094653
385|37.838333|-122.298611
385|37.838333|-122.298611
392|37.693|-122.0939
392|37.693|-122.0939
392|37.693|-122.0939
385|37.403633|-121.89436
385|37.403633|-121.89436
385|37.403633|-121.89436
<redacted>
sqlite>

Whoa, the cdr first_cell and towers cell values do not jibe! And, as we can see, there is more than one entry in the tower table for each cell designator. Take cell 385 for example: there are three distinct groupings of tower 385 with three different map coordinates for each group. It turns out that cell towers are grouped by the switch they are part of, recorded in the CDR and tower records as the NEID. The appropriate cell tower record can be further reconciled by the sector number, or side of the tower from which the call originated. The first_cell value is actually a concatenation of the sector and the tower number. How did I figure all this out? The answer came from reading the documentation (RTFM) that came with the records and some analysis of the spreadsheets.

I’ll demonstrate below the values that make a tower record unique and that must be considered when matching call records to tower details. I’ll focus on tower 385

Values that make the tower records unique.
sqlite> .headers on
sqlite> .mode columns
sqlite> select cell, sector, neid, azimuth, latitude, longitude from towers
   ...> where cell = 385;
Cell        Sector      NEID        Azimuth     Latitude    Longitude
----------  ----------  ----------  ----------  ----------  -----------
385         1           65          60          34.046944   -118.448056
385         2           65          200         34.046944   -118.448056
385         3           65          290         34.046944   -118.448056
385         1           512         55          37.838333   -122.298611
385         2           512         155         37.838333   -122.298611
385         1           95          0           37.403633   -121.89436
385         2           95          110         37.403633   -121.89436
385         3           95          190         37.403633   -121.89436
sqlite>

Now it is easy to see that the three different groupings of tower 385 are a result of that tower designator being used in three different switches, or NEIDs. Further, each tower can be resolved to a sector, which corresponds to a unique asimuth or direction the cell tower antenna points.

SQLite Substrings

The remaining problem in querying this data is the configuration of the first_cell value in the call details. Recall that it is the sector concatentated to the tower number. I needed a way to take the first digit from the integer and assign it to a sector value, and use the remaining four digits as the tower designator. Fortunately, SQLite has a built-in substring function to make this easy.

substr(X,Y,Z), substr(X,Y)

The substr(X,Y,Z) function returns a substring of input string X that begins with the Y-th character and which is Z characters long. If Z is omitted then substr(X,Y) returns all characters through the end of the string X beginning with the Y-th. The left-most character of X is number 1. If Y is negative then the first character of the substring is found by counting from the right rather than the left. If Z is negative then the abs(Z) characters preceding the Y-th character are returned. If X is a string then characters indices refer to actual UTF-8 characters. If X is a BLOB then the indices refer to bytes.

http://www.sqlite.org/lang_corefunc.html
— SQLite

From the SQLite documentation, we see that the substr function takes 2-3 arguments and returns a substring of the of the input string based according to those documents. To return the sector, I needed to take the first digit from the first_cell string in this manner: substr(first_cell, 1, 1). To return the tower identification, I needed to skip the first digit and return the rest of the string thusly: substr(first_cell, 2).

Note
I did not need to specify the third argument in the second substr() expression because I wanted the entirety of the string past the first digit.

Finally, I needed to include the NEID from the call detail records to ensure I’ve looked up the correct tower. Putting it all together, we can see how to created the values we need from the call records to find the matching tower details. I’ve added a second query to demonstrate, using the ltrim() function to strip the leading zeros from the cell column.

Using the SQLite substr() function
sqlite> select substr(first_cell, 1, 1) as sector,
   ...> substr(first_cell, 2) as cell, neid
   ...> from cdr where first_cell != 0 limit 5;
sector      cell        NEID
----------  ----------  ----------
4           0385        95
1           0962        169
1           0962        169
2           0962        169
3           0392        512
sqlite> select substr(first_cell, 1, 1) as sector,
   ...> ltrim(substr(first_cell, 2), 0) as cell, neid
   ...> from cdr where first_cell != 0 limit 5;
sector      cell        NEID
----------  ----------  ----------
4           385         95
1           962         169
1           962         169
2           962         169
3           392         512
sqlite>

Putting it All Together

As usual, the explanation is more step intensive that the actual work. The whole process can be done in one query, but I wanted to break it down so that it would be easier to recognize the elements of the query. To make it more legible, I’ll write it across several lines.

Matching the CDR call record to the correct tower details
sqlite> select start_date as Date, calling_nbr as Number, latitude, longitude
   ...> from cdr, towers
   ...> where substr(first_cell, 1, 1) = towers.sector and
   ...> ltrim(substr(first_cell, 2), 0) = cell and
   ...> cdr.neid = towers.neid limit 5;
Date                 Number      Latitude    Longitude
-------------------  ----------  ----------  -----------
2012-12-10 07:36:39  ##########  37.657222   -122.094653
2012-12-10 08:24:21  ##########  37.657222   -122.094653
2012-12-10 08:26:09  ##########  37.657222   -122.094653
2012-12-10 09:59:40  ##########  37.693      -122.0939
2012-12-10 10:00:26  ##########  37.705128   -122.047417
sqlite>

This can be converted to a CSV file suitable for mapping through a website like gpsvisualizer.com[GPS Visualizer] or a program like GPSBabel. First, I change the output mode to CSV and I change the columns names to comply with the mapping software’s requirements, printing a sample to ensure I have the format I am seeking. Then I output the data to a file for import to the mapping program.

Exporting the data for mapping
sqlite> .mode csv
sqlite> select start_date as name, calling_nbr as desc, latitude, longitude
   ...> from cdr, towers
   ...> where substr(first_cell, 1, 1) = towers.sector and
   ...> ltrim(substr(first_cell, 2),0) = cell and
   ...> cdr.neid = towers.neid limit 5;
name,desc,Latitude,Longitude
"2012-12-10 07:36:39",##########,37.657222,-122.094653
"2012-12-10 08:24:21",##########,37.657222,-122.094653
"2012-12-10 08:26:09",##########,37.657222,-122.094653
"2012-12-10 09:59:40",##########,37.693,-122.0939
"2012-12-10 10:00:26",##########,37.705128,-122.047417
sqlite> .output call_map.csv
sqlite> select start_date as name, calling_nbr as desc, latitude, longitude
   ...> from cdr, towers
   ...> where substr(first_cell, 1, 1) = towers.sector and
   ...> ltrim(substr(first_cell, 2),0) = cell and
   ...> cdr.neid = towers.neid;
sqlite>

So, in its simplest form, you can see this is not necessarily a difficult process. It can be distilled into three basic steps:

  1. Review the records and determine the relationships between them

  2. Import the data into a SQLite database

  3. Query the database for the output needed

Though there is commercial mapping software available, the software I’ve seen either lacks flexibility to deal with differences in records or in output. Further they usually require configuration that can take as long or longer than importing the data into SQLite and writing the specific query you need for your investigation. If you have the software and a happy with it, use it. If you find it is lacking the flexibility you need, consider doing the work by hand. You’ll be better for it!

Note
In the interest of full disclosure, the results demonstrated here are over simplified. For the real casework, I interpreted the call direction with a case statement to select the called number or calling number as appropriate. The result was a Google Earth map with waypoints named for the date and time of the call. Clicking the waypoint showed call details, e.g., (To: ()-## for 37 secs, azimuth 270).

3 comments:

  1. Your sector data from the locations table seems to only have 1,2,3 in. But your ID's range from 1-4. is this true to life?

    ReplyDelete
    Replies
    1. Yes, this is true to life. Depending on the cell tower manufacturer, you can have sectors 1-3, or 2-4. It gets even more complicated than that, but that discussion is beyond the scope of this post.

      Delete
  2. Do you actually get long Cell ID's in your call records starting with 1? Since your Site table has sectors of only 1-3. and Cells 1-4?

    ReplyDelete

Time Perspective

Telling time in forensic computing can be complicated. User interfaces hide the complexity, usually displaying time stamps in a human reada...